EXAMPLE 6

Preparation of (1-{9-[(4S,2R,3R,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6-aminopurin-2-yl}pyrazol-4-yl)-N-methylcarboxamide from Compound (4)

Aqueous 40% methylamine solution (1300 ml) was placed in a pressure reactor, cooled to 0-5° C., and the product of Example 5 (ethyl (2E)-3-({9-[(4S,2R,3R,5R)-3, 4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-2-[4-(ethoxycarbonyl)pyrazolyl]purin-6-yl}amino)-2-formylprop-2-eno- 50 ate (100 g) added. The mixture was stirred at 0-5° C. for at least 8 hours, monitoring the reaction for completion. When complete, the mixture was warmed, maintaining the temperature between 50 and 60° C. for 1 hour, and then cooled to less than 30° C. over a period of 1 hour. When the temperature was below 30° C., the mixture was degassed using a pressure of 100-150 mm Hg, allowing the temperature to decrease to 0-5° C. The mixture was stirred at 0-5° C. for at least 1 hour, maintaining the pressure at 100-150 mm Hg. The vacuum was then discontinued and replaced by nitrogen, maintaining the temperature at 0-5° C. for not less than 30 minutes. The solid product was then filtered off, washed with water (3×500 ml), then with absolute ethanol (625 ml). The product was dried under vacuum, not allowing the temperature to exceed 40° C., to provide $(1-\{9-[(4S,2R,$ 3R,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6aminopurin-2-yl}pyrazol-4-yl)-N-methylcarboxamide as its monohydrate.

¹H and ¹³C NMR spectra were obtained in the following manner. Two samples of the material obtained above were weighed out and dissolved in d₆DMSO—5.3 mg was used for the ¹H spectra, and 20.8 mg was used for ¹³C spectra. All spectra were acquired at ambient temperature on a JEOL Eclipse⁺ 400 spectrometer operating at 400 MHz for ¹H and 100 MHz for ¹³C.

10	Label	¹³ C shift (ppm)	¹ H shift (ppm)	Multiplicity, splitting (Hz)
	2	150.5 or 150.3	_	
15	4	156.4	_	
	4a	117.9	_	
	6	140.0	8.41	S
	7a	150.5 or 150.3	_	
	1'	86.9	5.94	D, 6.2
	2'	73.7	4.62	m
	2'-OH	_	5.50	D, 6.2
20	3'	70.5	4.17	m
	3'-OH	_	5.23	D, 4.7
	4'	85.7	3.96	m
	5'	61.5	3.67, 3.57	m
	5'-OH	_	5.02	D, 5.7
	A	140.9	8.07	D, 0.8
25	В	120.2	_	
	C	129.6	8.95	D, 0.8
	D	161.7	_	
	E	25.6	2.76	D, 4.6
	NH_2	_	7.77	br s
	NH	_	8.35	Q, 4.6

An elemental analysis gave the following results: C, 43.96%; H, 4.94%; N, 27.94. Theoretical: C, 44.12%; H, 4.94%; N, 27.44%; O, 27.09. The analysis corresponds within experimental error limits to the monohydrate.

We claim:

[1. A pharmaceutical composition prepared from a crystalline monohydrate form of the compound (1-{9-[(4S,2R,3R,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6-aminopurin-2-yl}pyrazol-4-yl)-N-methylcarboxamide by adding at least one pharmaceutically acceptable carrier.

[2. The pharmaceutical composition of claim 1, wherein the monohydrate is substantially free of 2-hydrazinoadenosine.]

[3. The pharmaceutical composition of claim 2, wherein the monohydrate is substantially free of other hydrates or amorphous form.]

[4. The pharmaceutical composition of claim 3, wherein the monohydrate has a purity of at least about 99.6%.]

[5. The pharmaceutical composition of claim 4, wherein the monohydrate exhibits an X-ray powder diffraction pattern having peaks at diffraction angle 2θ (°) of about 6, about 9, about 11, about 13, about 14.5, about 16.5, and about 18 as measured by Cu-K α 1 X-ray powder diffractometry.]

6. A pharmaceutical composition of an A_{2A} -adenosine receptor agonist produced by a process comprising the following step:

dissolving a crystalline monohydrate form of the compound (1-{9-[(4S,2R,3R,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6-aminopurin-2-yl}pyrazol-4-yl)-N-methylcarboxamide that is substantially free of 2-hydrazinoadenosine in a pharmaceutically acceptable carrier.

- 7. The pharmaceutical composition of claim 6, wherein the crystalline monohydrate is substantially free of other hydrates or amorphous forms.
- 8. The pharmaceutical composition of claim 6, wherein the crystalline monohydrate has a purity of at least about 99.6%.